Falkner–Skan boundary layer approximation in Rayleigh–Bénard convection

Author:

Shishkina Olga,Horn Susanne,Wagner Sebastian

Abstract

AbstractTo approximate the velocity and temperature within the boundary layers in turbulent thermal convection at moderate Rayleigh numbers, we consider the Falkner–Skan ansatz, which is a generalization of the Prandtl–Blasius one to a non-zero-pressure-gradient case. This ansatz takes into account the influence of the angle of attack $\beta $ of the large-scale circulation of a fluid inside a convection cell against the heated/cooled horizontal plate. With respect to turbulent Rayleigh–Bénard convection, we derive several theoretical estimates, among them the limiting cases of the temperature profiles for all angles $\beta $, for infinite and for infinitesimal Prandtl numbers $\mathit{Pr}$. Dependences on $\mathit{Pr}$ and $\beta $ of the ratio of the thermal to viscous boundary layers are obtained from the numerical solutions of the boundary layers equations. For particular cases of $\beta $, accurate approximations are developed as functions on $\mathit{Pr}$. The theoretical results are corroborated by our direct numerical simulations for $\mathit{Pr}= 0. 786$ (air) and $\mathit{Pr}= 4. 38$ (water). The angle of attack $\beta $ is estimated based on the information on the locations within the plane of the large-scale circulation where the time-averaged wall shear stress vanishes. For the fluids considered it is found that $\beta \approx 0. 7\mathrm{\pi} $ and the theoretical predictions based on the Falkner–Skan approximation for this $\beta $ leads to better agreement with the DNS results, compared with the Prandtl–Blasius approximation for $\beta = \mathrm{\pi} $.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultimate Rayleigh-Bénard turbulence;Reviews of Modern Physics;2024-08-06

2. Mean velocity and temperature profiles in turbulent vertical convection;Journal of Fluid Mechanics;2023-12-22

3. Effect of shear on local boundary layers in turbulent convection;Journal of Fluid Mechanics;2023-05-08

4. Heat-transfer scaling at moderate Prandtl numbers in the fully rough regime;Journal of Fluid Mechanics;2023-03-16

5. Turbulent Rotating Rayleigh–Bénard Convection;Annual Review of Fluid Mechanics;2023-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3