Onset of nonlinearity in oscillatory flow through a hexagonal sphere pack

Author:

Unglehrt LukasORCID,Manhart MichaelORCID

Abstract

We simulated laminar flow through a hexagonal sphere pack driven by a sinusoidal volume force using direct numerical simulation. We vary two independent parameters, the Hagen and Womersley numbers, representing the amplitude and frequency of the forcing. First, we determine for which regions in the parameter space nonlinear effects have to be considered. We judge the presence of nonlinear effects from the departure of the superficial velocity and kinetic energy from a linear behaviour as well as from the presence of higher harmonics in the discrete Fourier transform of the velocity field. We discuss the asymptotic behaviour of the onset of nonlinearity in the limits of low and high Womersley number, and we delineate approximately the parameter region that can be described using the linear theory. Second, we document the changes of instantaneous velocity fields with Hagen and Womersley numbers. We show that the onset of nonlinearity is accompanied by a loss of fore–aft symmetry of the flow, and subsequently, we employ the deviation from this symmetry to quantify the strength of nonlinear effects in the instantaneous velocity fields. Based on this analysis, we demonstrate that for higher Womersley numbers, the strongest nonlinear effects occur during the deceleration of the superficial velocity; consequently, the development of the nonlinearity is not in phase with the superficial velocity. Finally, we describe the leading-order nonlinear effects in the frequency domain and the interaction among the nonlinear Fourier modes that leads to a temporal variation in the strength of nonlinear effects.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3