Decomposition of the drag force in steady and oscillatory flow through a hexagonal sphere pack

Author:

Unglehrt LukasORCID,Manhart MichaelORCID

Abstract

We investigate steady and oscillatory flow through a hexagonal close-packed arrangement of spheres in the framework of the volume-averaged momentum equation. We quantify the friction and pressure drag based on a direct numerical simulation dataset. Using the pressure decomposition of Graham (J. Fluid Mech., vol. 881, 2019), the pressure drag can be further split up into an accelerative, a viscous and a convective contribution. For the accelerative pressure, a closed-form expression can be given in terms of the potential flow solution. We investigate the contributions of the different drag components to the volume-averaged momentum budget and their Reynolds number scaling. For steady flow, we find that the friction and viscous pressure drag are proportional to $Re$ at low Reynolds numbers and scale with $Re^{1.4}$ for high Reynolds numbers. This is close to the steady laminar boundary layer scaling. For the convective pressure drag, we find a cubic scaling at low and a quadratic scaling at high Reynolds numbers. The Reynolds stresses have a minor contribution to the momentum budget. For oscillatory flow at low and medium Womersley numbers, the amplitudes of the drag components are similar to the steady cases at the same Reynolds number. At high Womersley numbers, the drag components behave quite differently and the friction and viscous pressure drag are relatively insignificant. The drag components are not in phase with the forcing and the superficial velocity; the phase lag increases with the Womersley number. This suggests that new models beyond the current quasisteady approaches need to be developed.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference64 articles.

1. Wave Transmission through Permeable Breakwaters

2. An Introduction to Fluid Dynamics

3. Whitaker, S. 1985 A simple geometrical derivation of the spatial averaging theorem. Chemical Engineering Education 19 (1), 18–21 and 50–52.

4. Finn, J.R. 2013 A numerical study of inertial flow features in moderate Reynolds number flow through packed beds of spheres. PhD thesis, Oregon State University, Corvallis, Oregon.

5. Automated Solution of Differential Equations by the Finite Element Method

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3