Buoyancy-driven bubbly flows: scaling of velocities in bubble columns operated in the heterogeneous regime

Author:

Mezui Y.,Obligado M.ORCID,Cartellier A.ORCID

Abstract

The hydrodynamics of bubble columns in the heterogeneous regime is revisited. Focusing on air–water systems at large aspect ratio, we show from dimensional analysis that buoyancy equilibrates inertia, and that velocities scale as $(gD\varepsilon )^{1/2}$ , where $D$ is the bubble column diameter, $\varepsilon$ the void fraction and $g$ the gravitational acceleration. From new experiments in a $0.4$ m diameter column with ${{O}}(10^3)$ particle Reynolds number bubbles and from a detailed analysis of published data, we confirm the self-organization prevailing in the heterogeneous regime, and that the liquid flow rate is only set by the column diameter $D$ . Besides, direct liquid and gas velocity measurements demonstrate that the relative velocity increases above the terminal velocity $U_T$ in the heterogeneous regime, and that it tends to ${\sim }2.4 U_T$ at very large gas superficial velocities $V_{sg}$ . The proposed velocity scaling is shown to hold for liquid and gas mean velocities and for their standard deviations. Furthermore, it is found to be valid over a wide range of conditions, corresponding to Froude numbers $Fr=V_{sg}/(gD)^{1/2}$ from 0.02 to 0.5. Then, the relevance of this scaling for coalescing media is discussed. Moreover, following the successful prediction of the void fraction with a Zuber & Findlay approach at the beginning of the heterogeneous regime, we show how the void fraction is correlated with $Fr$ . Further investigations are finally suggested to connect the increase in relative velocity with meso-scale structures known to exist in the heterogeneous regime.

Funder

IDEX UGA

LabEx TEC21

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3