Buoyancy-driven bubbly flows: role of meso-scale structures on the relative motion between phases in bubble columns operated in the heterogeneous regime

Author:

Mezui Y.,Obligado M.ORCID,Cartellier A.ORCID

Abstract

The hydrodynamics of bubble columns in the heterogeneous regime is investigated from experiments with bubbles at large particle Reynolds numbers and without coalescence. The void fraction field $\varepsilon$ at small scales, analysed with Voronoï tessellations, corresponds to a random Poisson process (RPP) in homogeneous conditions but it significantly differs from an RPP in the heterogeneous regime. The distance to an RPP allows identifying meso-scale structures, namely clusters, void regions and intermediate regions. A series of arguments demonstrate that the bubble motion is driven by the dynamics of these structures. Notably, bubbles in clusters (respectively in intermediate regions) are moving up faster, up to 3.5 (respectively 2) times the terminal velocity, than bubbles in void regions whose absolute velocity equals the mean liquid velocity. In addition, the mean unconditional relative velocity of bubbles is recovered from mean relative velocities conditional to meso-scale structures, weighted by the proportion of bubbles in each structure. Assuming buoyancy–inertia equilibrium for each structure, the relative velocity is related to the characteristic size and concentration of meso-scale structures. By considering the latter quantity's values at large gas superficial velocities, a cartoon of the internal flow structure is proposed. Arguments are proposed to help understanding why the relative velocity scales as $(gD\varepsilon )^{1/2}$ (with $D$ the column's diameter and $g$ gravity's acceleration). The proposed cartoon seems consistent with a fast-track mechanism that, for the moderate Rouse numbers studied, leads to liquid velocity fluctuations proportional to the relative velocity. The potential impact of coalescence on the above analysis is also commented.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3