Disturbance growth on a NACA0008 wing subjected to free stream turbulence

Author:

Faúndez Alarcón José M.ORCID,Morra PierluigiORCID,Hanifi ArdeshirORCID,Henningson Dan S.ORCID

Abstract

The stability of an incompressible boundary layer flow over a wing in the presence of free stream turbulence (FST) has been investigated by means of direct numerical simulations and compared with the linearised boundary layer equations. Four different FST conditions have been considered, which are characterised by their turbulence intensity levels and length scales. In all cases the perturbed flow develops into elongated disturbances of high and low streamwise velocity inside the boundary layer, where their spacing has been found to be strongly dependent on the scales of the incoming free stream vorticity. The breakdown of these streaks into turbulent spots from local secondary instabilities is also observed, presenting the same development as the ones reported in flat plate experiments. The disturbance growth, characterised by its root mean squares value, is found to depend not only on the turbulence level, but also on the FST length scales. Particularly, higher disturbance growth is observed for our cases with larger length scales. This behaviour is attributed to the preferred wavenumbers that can exhibit maximum transient growth. We study this boundary layer preference by projection of the flow fields at the leading edge onto optimal disturbances. Our results demonstrate that optimal disturbance growth is the main cause of growth of disturbances on the wing boundary layer.

Funder

H2020 European Research Council

VINNOVA

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3