Direct numerical simulation of transition under free-stream turbulence and the influence of large integral length scales

Author:

Đurović Kristina1ORCID,Hanifi Ardeshir1ORCID,Schlatter Philipp1ORCID,Sasaki Kenzo1ORCID,Henningson Dan S.1ORCID

Affiliation:

1. FLOW, Department of Engineering Mechanics, KTH Royal Institute of Technology , SE-100 44 Stockholm, Sweden

Abstract

Under the action of free-stream turbulence (FST), elongated streamwise streaky structures are generated inside the boundary layer, and their amplitude and wavelength are crucial for the transition onset. While turbulence intensity is strongly correlated with the transitional Reynolds number, characteristic length scales of the FST are often considered to have a slight impact on the transition location. However, a recent experiment by Fransson and Shahinfar [J. Fluid Mech. 899, A23 (2020)] shows significant effects of FST scales. They found that, for higher free-stream turbulence levels and larger integral length scales, an increase in the length scale postpones transition, contrary to established literature. Here, by performing well-resolved numerical simulations, we aim at understanding why the FST integral length scale affects the transition location differently at low- and high turbulence levels. We found that the integral length scales in Fransson and Shahinfar's experiment are so large that the introduced wide streaks have substantially lower growth in the laminar region, upstream of the transition to turbulence, than the streaks induced by smaller integral length scales. The energy in the boundary layer subsequently propagate to smaller spanwise scales as a result of the nonlinear interaction. When the energy has reached smaller spanwise scales, larger amplitude streaks results in regions where the streak growth are larger. It takes longer for the energy from wider streaks to propagate to the spanwise scales associated with the breakdown to turbulence, than for those with smaller spanwise scales. Thus, there is a faster transition for FST with lower integral length scales in this case.

Funder

European Research Council

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3