Synchronization of turbulence in channel flow

Author:

Wang Mengze,Zaki Tamer A.ORCID

Abstract

Synchronization of turbulence in channel flow is investigated using continuous data assimilation. The flow is unknown within a region of the channel. Beyond this region the velocity field is provided, and is directly prescribed in the simulation, while the pressure is unknown throughout the entire domain. Synchronization takes place when the simulation recovers the full true state of the flow, or in other words when the missing region is accurately re-established, spontaneously. Successful synchronization depends on the orientation, location and size of the missing layer. For friction Reynolds numbers up to one thousand, wall-attached horizontal layers can synchronize as long as their thickness is less than approximately thirty wall units. When the horizontal layer is detached from the wall, the critical thickness increases with height and is proportional to the local wall-normal Taylor microscale. A flow-parallel, vertical layer that spans the height of the channel synchronizes when its spanwise width is of the order of the near-wall Taylor microscale, while the criterion for a crossflow vertical layer is set by the advection distance within a Lyapunov time scale. Finally, we demonstrate that synchronization is possible when only planar velocity data are available, rather than the full outer state, as long as the unknown region satisfies the condition for synchronization in one direction. These numerical experiments demonstrate the capacity of accurately reconstructing, or synchronizing, the missing scales of turbulence from observations, using continuous data assimilation.

Funder

Office of Naval Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3