Abstract
Analysis of the classic problem of shallow film flow on an inclined plane is revisited for a Brownian suspension. The particle phase, considered in a two-fluid model, is predicted to cause pronounced changes to the instability characteristics of the flow. These are due to an indirect effect of the non-Newtonian rheology, with the normal stresses causing migration and a viscosity stratification which strongly alters the base state from its Newtonian counterpart. Both the short- and long-wavelength inertial stability boundaries are altered, and, more strikingly, an instability at zero Reynolds number is found.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献