Stability of gravity-driven particle-laden flows – roles of shear-induced migration and normal stresses

Author:

Dhas Darish JeswinORCID,Roy AnubhabORCID

Abstract

In this paper, we study the role of shear-induced migration and particle-induced normal stresses in the formation and stability of a particle-laden, gravity-driven shallow flow. We first examine the modification of the base-state Nusselt flow due to the underlying microstructure, how shear-induced migration leads to viscosity stratification. We inspect the development of the base state via the boundary layer formation in the ‘shallow’ limit and find a reduction in entrance length with increasing bulk particle concentration and an increase in entrance length with increasing Péclet number ($Pe_p = \dot {\gamma } a^2 / D_0$, where $\dot{\gamma}$ is the average shear rate, a is the particle size and $D_0$ is the single particle diffusivity). A linear stability analysis is then performed on the fully developed state to identify two modes of instability typically found in gravity-driven falling films – the long-wave surface and the short-wave shear modes. We find that when the associated Péclet number is $Pe_p \ll 1$, increasing bulk particle volume fraction delays the onset of instability for both the surface mode and shear mode. However, with $Pe_p = {O}(1)$, we find an enhancement in both modes of instability. We also find that, beyond a critical Péclet number, for a fixed particle volume fraction, the surface mode is unstable even in the absence of fluid inertia. The enhanced destabilisation is attributed to the combined effects of base-state viscosity stratification and momentum forcing via particle concentration perturbations. We also show that the physics behind the enhancement of instability is independent of the choice of the constitutive model used to describe the dynamics of the particle phase, provided the chosen model has elements of shear-induced migration.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3