Optimizing low-Reynolds-number predation via optimal control and reinforcement learning

Author:

Zhu Guangpu,Fang Wen-Zhen,Zhu LailaiORCID

Abstract

We seek the best stroke sequences of a finite-size swimming predator chasing a non-motile point or finite-size prey at low Reynolds number. We use optimal control to seek the globally optimal solutions for the former and reinforcement learning (RL) for general situations. The predator is represented by a squirmer model that can translate forward and laterally, rotate and generate a stresslet flow. We identify the predator's best squirming sequences to achieve the time-optimal (TO) and efficiency-optimal (EO) predation. For a point prey, the TO squirmer executing translational motions favours a two-fold$L$-shaped trajectory that enables it to exploit the disturbance flow for accelerated predation; using a stresslet mode expedites significantly the EO predation, allowing the predator to catch the prey faster yet with lower energy consumption and higher predatory efficiency; the predator can harness its stresslet disturbance flow to suck the prey towards itself; compared to a translating predator, its compeer combining translation and rotation is less time-efficient, and the latter occasionally achieves the TO predation via retreating in order to advance. We also adopt RL to reproduce the globally optimal predatory strategy of chasing a point prey, qualitatively capturing the crucial two-fold attribute of a TO path. Using a numerically emulated RL environment, we explore the dependence of the optimal predatory path on the size of prey. Our results might provide useful information that help in the design of synthetic microswimmers such asin vivomedical microrobots capable of capturing and approaching objects in viscous flows.

Funder

National University of Singapore

Agency for Science, Technology and Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emergence of odd elasticity in a microswimmer using deep reinforcement learning;Physical Review Research;2024-07-02

2. Smart active particles learn and transcend bacterial foraging strategies;Proceedings of the National Academy of Sciences;2024-04

3. Introduction;Springer Theses;2024

4. Chemotaxis of an elastic flagellated microrobot;Physical Review E;2023-10-23

5. Hydrodynamic pursuit by cognitive self-steering microswimmers;Communications Physics;2023-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3