Smart active particles learn and transcend bacterial foraging strategies

Author:

Nasiri Mahdi1ORCID,Loran Edwin1ORCID,Liebchen Benno1ORCID

Affiliation:

1. Institute of Condensed Matter Physics, Department of Physics, Technische Universität Darmstadt, Darmstadt D-64289, Germany

Abstract

Throughout evolution, bacteria and other microorganisms have learned efficient foraging strategies that exploit characteristic properties of their unknown environment. While much research has been devoted to the exploration of statistical models describing the dynamics of foraging bacteria and other (micro-) organisms, little is known, regarding the question of how good the learned strategies actually are. This knowledge gap is largely caused by the absence of methods allowing to systematically develop alternative foraging strategies to compare with. In the present work, we use deep reinforcement learning to show that a smart run-and-tumble agent, which strives to find nutrients for its survival, learns motion patterns that are remarkably similar to the trajectories of chemotactic bacteria. Strikingly, despite this similarity, we also find interesting differences between the learned tumble rate distribution and the one that is commonly assumed for the run and tumble model. We find that these differences equip the agent with significant advantages regarding its foraging and survival capabilities. Our results uncover a generic route to use deep reinforcement learning for discovering search and collection strategies that exploit characteristic but initially unknown features of the environment. These results can be used, e.g., to program future microswimmers, nanorobots, and smart active particles for tasks like searching for cancer cells, micro-waste collection, or environmental remediation.

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3