On the fully coupled dynamics of flexible fibres dispersed in modulated turbulence

Author:

Olivieri StefanoORCID,Mazzino AndreaORCID,Rosti Marco E.ORCID

Abstract

The present work investigates the mechanical behaviour of finite-size, elastic and inertial fibres freely moving in a homogeneous and isotropic turbulent flow at moderate Reynolds number. Four-way coupled, direct numerical simulations, based on a finite difference discretisation and the immersed boundary method, are performed to mutually couple the dynamics of fibres and fluid turbulence, allowing us to account for the backreaction of the dispersed phase to the carrier flow. An extensive parametric study is carried out in zero-gravity condition over the characteristic properties of the suspension, i.e. fibre's linear density (from iso-dense to denser-than-the-fluid fibres), length (from short fibres comparable with the dissipative scale to long fibres comparable with the integral scale) and bending stiffness (from highly flexible to almost rigid fibres), as well as the concentration (from dilute to non-dilute suspensions). Results reveal the existence of a robust turbulence modulation mechanism that is primarily controlled by the mass fraction of the suspension (with only a minor influence of the fibre's bending stiffness), which is characterised in detail by means of a scale-by-scale analysis in Fourier space. Despite such alteration with respect to the single-phase case due to the non-negligible backreaction, fibres experience only two possible flapping states (previously identified in the very dilute condition) while being transported and deformed by the flow. In addition, we show that the maximum curvature obeys different scaling laws that can be derived from the fibre dynamical equation. Finally, we explore the clustering and preferential alignment of fibres within the flow, highlighting the peculiar role of inertia and elasticity.

Funder

Compagnia di San Paolo

Cabinet Office, Government of Japan

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3