Clustering and turbulence modulation in particle-laden shear flows

Author:

Gualtieri P.,Picano F.,Sardina G.,Casciola C. M.

Abstract

AbstractTurbulent fluctuations induce the common phenomenon known as clustering in the spatial arrangement of small inertial particles transported by the fluid. Particles spread non-uniformly, and form clusters where their local concentration is much higher than in nearby rarefaction regions. The underlying physics has been exhaustively analysed in the so-called one-way coupling regime, i.e. negligible back-reaction of the particles on the fluid, where the mean flow anisotropy induces preferential orientation of the clusters. Turbulent transport in suspensions with significant mass in the disperse phase, i.e. particles back-reacting in the carrier phase (the two-way coupling regime), has instead been much less investigated and is still poorly understood. The issue is discussed here by addressing direct numerical simulations of particle-laden homogeneous shear flows in the two-way coupling regime. Consistent with previous findings, we observe an overall depletion of the turbulent fluctuations for particles with response time of the order of the Kolmogorov time scale. The depletion occurs in the energy-containing range, while augmentation is observed in the small-scale range down to the dissipative scales. Increasing the mass load results in substantial broadening of the energy cospectrum, thereby extending the range of scales driven by anisotropic production mechanisms. As discussed throughout the paper, this is due to the clusters which form the spatial support of the back-reaction field and give rise to a highly anisotropic forcing, active down to the smallest scales. A certain impact on two-phase flow turbulence modelling is expected from the above conclusions, since the frequently assumed small-scale isotropy is poorly recovered when the coupling between the phases becomes significant.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3