On the synchronisation of three-dimensional shock layer and laminar separation bubble instabilities in hypersonic flow over a double wedge

Author:

Sawant Saurabh S.ORCID,Theofilis V.ORCID,Levin D.A.ORCID

Abstract

Linear three-dimensional instability is studied in the shock layer and the laminar separation bubble (LSB) induced by shock-wave/boundary-layer interactions in a Mach 7 flow of nitrogen over a double wedge with a $30^{\circ }\text {--}55^{\circ }$ cross-sectional profile. At a free-stream unit Reynolds number $Re=5.2\times 10^{4}\,{\rm m}^{-1}$ this flow exhibits rarefaction effects and has shock thicknesses comparable to the thickness of the boundary layer at separation. Flow features have been fully resolved using a high-fidelity massively parallel implementation of the direct simulation Monte Carlo method that captures the flow evolution from the inception of three-dimensionality, through linear growth of instabilities, to the early stages of nonlinear saturation. It is shown that the LSB sustains self-excited, small-amplitude perturbations that originate past the primary separation line and lead to spanwise-periodic wall striations inside the bubble and downstream of the primary reattachment line, as known from earlier experiments, simulations and instability analyses. A spanwise-periodic instability, synchronised with that in the separation zone, is identified herein for the first time, which exists in the internal structure of the separation and detached shock layers, and manifests itself as spanwise-periodic cats-eyes patterns in the global mode amplitude functions. The growth rate and the spanwise-periodicity length of linear disturbances in the shock layers and the LSB are found to be identical. Linear amplification of the most unstable three-dimensional flow perturbations leads to synchronised low-frequency unsteadiness of the triple point, with a Strouhal number of $St\approx 0.028$ .

Funder

Office of Naval Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference92 articles.

1. Theofilis, V. 2000 On steady–state flow solutions and their nonparallel global linear instability. In 8th European Turbulence Conference, June 27–30, 2000 (ed. C. Dopazo), pp. 35–38. CIMNE, International Center for Numerical Methods in Engineering.

2. Esfahanian, V. 1991 Computation and stability analysis of laminar flow over a blunt cone in hypersonic flow. PhD thesis, The Ohio State University. https://etd.ohiolink.edu/apexprod/rws_olink/r/1501/10?p10_etd_subid=141429&clear=10.

3. Three-Dimensional Flow Structures at Supersonic Flow over the Compression Ramp

4. Simulation and stability analysis of oblique shock-wave/boundary-layer interactions at Mach 5.92

5. Mack, L.M. 1984 Boundary-layer linear stability theory. Tech. Rep. AGARD Report No. 709, Part 3. Jet Propulsion Laboratory, California Institute of Technology.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3