Abstract
Pattern-forming with externally imposed symmetry is ubiquitous in nature but little studied. We present experimental studies of pattern formation and selection by spatial periodic forcing in rapidly rotating convection. When periodic topographic structures are constructed on the heated boundary, they modulate the local temperature and velocity fields. Symmetric convection patterns in the form of regular vortex lattices are observed near the onset of convection, when the periodicity of the external forcing is set close to the intrinsic vortex spacing. We show that the new patterns arise as a dynamical process of imperfect bifurcation which is well described by a Ginzburg–Landau-like model. We explore the phase diagram of buoyancy strength and periodicity of external forcing to find the optimal experimental settings for which the vortex patterns best match that of the external forcing.
Funder
National Natural Science Foundation of China
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献