Plumes in rotating convection. Part 1. Ensemble statistics and dynamical balances

Author:

JULIEN KEITH,LEGG SONYA,McWILLIAMS JAMES,WERNE JOSEPH

Abstract

Atmospheric and oceanic convection often occurs over areas occupied by many localized circulation elements known as plumes. The convective transports therefore may depend not only on the individual elements, but also on the interactions between plumes and the turbulent environment created by other plumes. However, many attempts to understand these plumes focus on individual isolated elements, and the behaviour of an ensemble is not understood. Geophysical convection may be influenced by rotation when the transit time of a convecting element is long compared to an inertial period (for example in deep oceanic convection). Much recent attention has been given to the effect of rotation on individual plumes, but the role of rotation in modifying the behaviour of an ensemble is not fully understood. Here we examine the behaviour of plumes within an ensemble, both with and without rotation, to identify the influence of rotation on ensemble plume dynamics.We identify the coherent structures (plumes) present in numerical solutions of turbulent Rayleigh–Bénard convection, a canonical example of a turbulent plume ensemble. We use a conditional sampling compositing technique to extract the typical structure in both non-rotating and rotating solutions. The dynamical balances of these composite plumes are evaluated and compared with entraining plume models. We find many differences between non-rotating and rotating plumes in their transports of mass, buoyancy and momentum. As shown in previous studies, the expansion of the turbulent plume by entrainment of exterior fluid is suppressed by strong rotation. Our most significant new result is quantification of the continuous mixing between the plume and ambient fluid which occurs at high rotation without any net changes in plume volume. This mixing is generated by the plume–plume interactions and acts to reduce the buoyancy anomaly of the plume. By contrast, in the non-rotating case, no such loss of buoyancy by mixing occurs. As a result, the total buoyancy transport by upwardly moving plumes diminishes across the layer in the rotating case, while remaining approximately constant in the non-rotating case. At high values of rotation, the net vertical acceleration is considerably reduced compared to the non-rotating case due to loss of momentum through entrainment and mixing and a decelerating pressure gradient which partially balances the buoyancy-driven acceleration of plumes. As a result of the dilution of buoyancy, the pressure-gradient deceleration and the loss of momentum due to mixing with the environment in the rotating solutions, the conversion of potential energy to kinetic energy is significantly less than that of non-rotating plumes.The combination of efficient lateral mixing and slow vertical movement by the plumes accounts for the unstable mean temperature gradient that occurs in rotating Rayleigh–Bénard convection, while the less penetrative convection found at low Rossby number is a consequence of the reduced kinetic energy transport. Within the ensemble of plumes identified by the conditional sampling algorithm, distributions of vertical velocity, buoyancy and vorticity mimic those of the volume as a whole. Plumes cover a small fraction of the total area, yet account for most of the vertical heat flux.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3