An experimental study on the multiscale properties of turbulence in bubble-laden flows

Author:

Ma TianORCID,Hessenkemper HendrikORCID,Lucas Dirk,Bragg Andrew D.ORCID

Abstract

The properties of bubble-laden turbulent flows at different scales are investigated experimentally, focusing on the flow kinetic energy, energy transfer and extreme events. The experiments employed particle shadow velocimetry measurements to measure the flow in a column generated by a homogeneous bubble swarm rising in water, for two different bubble diameters ( $2.7$ mm and $3.9$ mm) and moderate gas volume fractions ( $0.26\,\%\sim 1.31\,\%$ ). The two velocity components were measured at high resolution, and used to construct structure functions up to twelfth order for separations spanning the small to large scales in the flow. Concerning the flow anisotropy, the velocity structure functions are found to differ for separations in the vertical and horizontal directions of the flow, and the cases with smaller bubbles are the most anisotropic, with a dependence on void fraction. The degree of anisotropy is shown to increase as the order of the structure functions is increased, showing that extreme events in the flow are the most anisotropic. Our results show that the average energy transfer with the horizontal velocity component is downscale, just as for the three-dimensional single-phase turbulence. However, the energy transfer associated with the vertical component of the fluid velocity is upscale. The probability density functions of the velocity increments reveal that extreme values become more probable with decreasing Reynolds number, the opposite of the behaviour in single-phase turbulence. We visualize those extreme events and find that regions of intense small-scale velocity increments occur near the turbulent/non-turbulent interface at the boundary of the bubble wake.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3