Measurements of the average properties of a suspension of bubbles rising in a vertical channel

Author:

ZENIT ROBERTO,KOCH DONALD L.,SANGANI ASHOK S.

Abstract

Experiments were performed in a vertical channel to study the behaviour of a monodisperse bubble suspension for which the dual limit of large Reynolds number and small Weber number was satisfied. Measurements of the liquid-phase velocity fluctuations were obtained with a hot-wire anemometer. The gas volume fraction, bubble velocity, bubble velocity fluctuations and bubble collision rate were measured using a dual impedance probe. Digital image analysis was performed to quantify the small polydispersity of the bubbles as well as the bubble shape.A rapid decrease in bubble velocity with bubble concentration in very dilute suspensions is attributed to the effects of bubble–wall collisions. The more gradual subsequent hindering of bubble motion is in qualitative agreement with the predictions of Spelt & Sangani (1998) for the effects of potential-flow bubble–bubble interactions on the mean velocity. The ratio of the bubble velocity variance to the square of the mean is O(0.1). For these conditions Spelt & Sangani predict that the homogeneous suspension will be unstable and clustering into horizontal rafts will take place. Evidence for bubble clustering is obtained by analysis of video images. The fluid velocity variance is larger than would be expected for a homogeneous suspension and the fluid velocity frequency spectrum indicates the presence of velocity fluctuations that are slow compared with the time for the passage of an individual bubble. These observations provide further evidence for bubble clustering.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3