Flow states and heat transport in Rayleigh–Bénard convection with different sidewall boundary conditions

Author:

Reiter PhilippORCID,Zhang XuanORCID,Shishkina OlgaORCID

Abstract

This work addresses the effects of different thermal sidewall boundary conditions on the formation of flow states and heat transport in two- and three-dimensional Rayleigh–Bénard convection (RBC) by means of direct numerical simulations and steady-state analysis for Rayleigh numbers ${\textit {Ra}}$ up to $4\times 10^{10}$ and Prandtl numbers ${\textit {Pr}}=0.1,1$ and $10$ . We show that a linear temperature profile imposed at the conductive sidewall leads to a premature collapse of the single-roll state, whereas a sidewall maintained at a constant temperature enhances its stability. The collapse is caused by accelerated growth of the corner rolls with two distinct growth rate regimes determined by diffusion or convection for small or large ${\textit {Ra}}$ , respectively. Above the collapse of the single-roll state, we find the emergence of a double-roll state in two-dimensional RBC and a double-toroidal state in three-dimensional cylindrical RBC. These states are most prominent in RBC with conductive sidewalls. The different states are reflected in the global heat transport, so that the different thermal conditions at the sidewall lead to significant differences in the Nusselt number for small to moderate ${\textit {Ra}}$ . However, for larger ${\textit {Ra}}$ , the heat transport and flow dynamics become increasingly alike for different sidewalls and are almost indistinguishable for ${\textit {Ra}}>10^{9}$ . This suggests that the influence of imperfectly insulated sidewalls in RBC experiments is insignificant at very high ${\textit {Ra}}$ – provided that the mean sidewall temperature is controlled.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3