Experimental study of bubble competition and spike competition in Richtmyer–Meshkov flows

Author:

Liang YuORCID,Liu Lili,Luo XishengORCID

Abstract

Shock-tube experiments on various two-bubble and two-spike interfaces are performed to examine the dependence of bubble competition and spike competition on the initial spectra and density ratio of the interface. The differences in the influences of bubble competition and spike competition on the Richtmyer–Meshkov instability are highlighted for the first time. The bubble-competition effect is mainly dependent on the initial spectra of the two-bubble configuration. In contrast, the spike-competition effect is determined by both the initial spectra and density ratio. The extended buoyancy–drag model is adopted to explain the variation of the drag force imposed on the long-wavelength and short-wavelength structures as the initial conditions change. Based on the spectrum analysis, it is found that the constituent modes of two-bubble and two-spike interfaces have different contributions to the long-wavelength and short-wavelength perturbation growths. A generalised, nonlinear, analytical model is then established to quantify the bubble-competition effect and spike-competition effect considering arbitrary initial spectra and density ratio. The bubble-competition effect is believed to be stronger than the spike-competition effect at a high density ratio because it suppresses the high-frequency perturbation growth more evidently.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3