Hydrodynamic instabilities of a dual-mode air–SF6 interface induced by a cylindrically convergent shock

Author:

Liang YuORCID,Liu Lili,Luo XishengORCID,Wen Chih-YungORCID

Abstract

Shock-tube experiments are performed on the convergent Richtmyer–Meshkov (RM) instability of a multimode interface. The temporal growth of each Fourier mode perturbation is measured. The hydrodynamic instabilities, including the RM instability and the additional Rayleigh–Taylor (RT) effect, imposed by the convergent shock wave on the dual-mode interface, are investigated. The mode-coupling effect on the convergent RM instability coupled with the RT effect is quantified. It is evident that the amplitude growths of all first-order modes and second-order harmonics and their couplings depend on the variance of the interface radius, and are influenced by the mode-coupling from the very beginning. It is confirmed that the mode-coupling mechanism is closely related to the initial spectrum, including azimuthal wavenumbers, relative phases and initial amplitudes of the constituent modes. Different from the conclusion in previous studies on the convergent single-mode RM instability that the additional RT effect always suppresses the perturbation growth, the mode-coupling might result in the additional RT effect promoting the instability of the constituent Fourier mode. By considering the geometry convergence, the mode-coupling effect and other physical mechanisms, second-order nonlinear solutions are established to predict the RM instability and the additional RT effect in the cylindrical geometry, reasonably quantifying the amplitude growths of each mode, harmonic and coupling. The nonlinear solutions are further validated by simulations considering various initial spectra. Last, the temporal evolutions of the mixed mass and normalized mixed mass of a shocked multimode interface are calculated numerically to quantify the mixing of two fluids in the cylindrical geometry.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review on hydrodynamic instabilities of a shocked gas layer;Science China Physics, Mechanics & Astronomy;2023-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3