Combined particle image velocimetry and thermometry of turbulent superstructures in thermal convection

Author:

Moller Sebastian,Käufer TheoORCID,Pandey AmbrishORCID,Schumacher JörgORCID,Cierpka ChristianORCID

Abstract

Turbulent superstructures in horizontally extended three-dimensional Rayleigh–Bénard convection flows are investigated in controlled laboratory experiments in water at Prandtl number ${Pr}=7$ . A Rayleigh–Bénard cell with square cross-section, aspect ratio $\varGamma =l/h=25$ , side length $l$ and height $h$ is used. Three different Rayleigh numbers in the range $10^{5} < {Ra} < 10^{6}$ are considered. The cell is accessible optically, such that thermochromic liquid crystals can be seeded as tracer particles to monitor simultaneously temperature and velocity fields in a large section of the horizontal mid-plane for long time periods of up to 6 h, corresponding to approximately $10^{4}$ convective free-fall time units. The joint application of stereoscopic particle image velocimetry and thermometry opens the possibility to assess the local convective heat flux fields in the bulk of the convection cell and thus to analyse the characteristic large-scale transport patterns in the flow. A direct comparison with existing direct numerical simulation data in the same parameter range of $Pr$ , ${Ra}$ and $\varGamma$ reveals the same superstructure patterns and global turbulent heat transfer scaling ${Nu}({Ra})$ . Slight quantitative differences can be traced back to violations of the isothermal boundary condition at the extended water-cooled glass plate at the top. The characteristic scales of the patterns fall into the same size range, but are systematically larger. It is confirmed experimentally that the superstructure patterns are an important backbone of the heat transfer. The present experiments enable, furthermore, the study of the gradual evolution of the large-scale patterns in time, which is challenging in simulations of large-aspect-ratio turbulent convection.

Funder

Carl-Zeiss-Stiftung

Deutsche Forschungsgemeinschaft

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3