Data-driven estimation of scalar quantities from planar velocity measurements by deep learning applied to temperature in thermal convection

Author:

Teutsch PhilippORCID,Käufer TheoORCID,Mäder PatrickORCID,Cierpka ChristianORCID

Abstract

AbstractThe measurement of the transport of scalar quantities within flows is oftentimes laborious, difficult or even unfeasible. On the other hand, velocity measurement techniques are very advanced and give high-resolution, high-fidelity experimental data. Hence, we explore the capabilities of a deep learning model to predict the scalar quantity, in our case temperature, from measured velocity data. Our method is purely data-driven and based on the u-net architecture and, therefore, well-suited for planar experimental data. We demonstrate the applicability of the u-net on experimental temperature and velocity data, measured in large aspect ratio Rayleigh–Bénard convection at $$\textrm{Pr} =7.1$$ Pr = 7.1 and $$\textrm{Ra} =2\times 10^5,4\times 10^5,7\times 10^5$$ Ra = 2 × 10 5 , 4 × 10 5 , 7 × 10 5 . We conduct a hyper-parameter optimization and ablation study to ensure appropriate training convergence and test different architectural variations for the u-net. We test two application scenarios that are of interest to experimentalists. One, in which the u-net is trained with data of the same experimental run and one in which the u-net is trained on data of different $$\textrm{Ra}$$ Ra . Our analysis shows that the u-net can predict temperature fields similar to the measurement data and preserves typical spatial structure sizes. Moreover, the analysis of the heat transfer associated with the temperature showed good agreement when the u-net is trained with data of the same experimental run. The relative difference between measured and reconstructed local heat transfer of the system characterized by the Nusselt number $$\textrm{Nu}$$ Nu is between 0.3 and 14.1% depending on $$\textrm{Ra}$$ Ra . We conclude that deep learning has the potential to supplement measurements and can partially alleviate the expense of additional measurement of the scalar quantity.

Funder

Carl-Zeiss-Stiftung

Deutsche Forschungsgemeinschaft

Technische Universität Ilmenau

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,General Physics and Astronomy,Mechanics of Materials,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3