Characterization of unsteady separation in a turbulent boundary layer: mean and phase-averaged flow

Author:

Ambrogi FrancescoORCID,Piomelli U.ORCID,Rival D.E.ORCID

Abstract

A spatially developing turbulent boundary layer subject to a space- and time-dependent pressure gradient is analysed via large-eddy simulation. The unsteadiness is prescribed by imposing an oscillating suction–blowing velocity profile at the top boundary of the computational domain. The alternating favourable and adverse pressure gradients cause the flow to separate and reattach to the wall periodically. A range of reduced frequencies $k$ was investigated, spanning from a very rapid flutter-like motion to a slow, quasi-steady flapping. The Reynolds number based on the boundary-layer displacement thickness $\delta _o^{*}$ at the inflow plane is $Re_*=1000$ . Both time- and phase-averaged fields are analysed and results are compared with steady conditions. The reduced frequency $k$ has a significant effect on the transient flow-separation process. For high $k$ the separation bubble does not grow as thick as in the corresponding steady case, but the length of the bubble remains comparable; hysteresis is observed in the near-wall region. As $k$ is reduced, a threshold is met at which the separation bubble grows in the wall-normal direction. However, the length of the bubble is significantly reduced again when compared with the steady case. At this frequency, the region of slow-moving fluid generated by the flow reversal is advected downstream, causing a decorrelation between the forcing (the imposed free-stream velocity) and the velocity and pressure downstream of the separation bubble. Moreover, hysteresis effects are shifted away from the wall. At the lowest frequency a quasi-steady solution is approached; however, transient effects are still present in the backflow region.

Funder

Compute Canada

Natural Sciences and Engineering Research Council of Canada

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3