Immersed body motion: near-bottom added mass effects

Author:

Maleki ShayanORCID,Fiorotto VirgilioORCID

Abstract

The presence of a solid boundary can cause a substantial increase in added mass due to a solid body movement in the fluid. If the body is very close to the boundary, the added mass increases at an even greater rate. The added mass can be of considerable importance in many dams and hydropower, water/ocean, civil and mechanical engineering problems; furthermore, it has an important effect on the dynamics of the vibrating body in the fluid. The principal aim of this paper is to define a novel model to properly evaluate the near-bottom effects of the added mass and to investigate the instantaneous pressure field due to a body movement that changes the thickness of a compressible thin fluid film close to a solid boundary. The body movement can be due to the application of an external force according to Newton's law. This phenomenon is studied theoretically in this paper, and a hydrodynamic model able to compute the instantaneous pressure field in the thin fluid film is drawn out. The fluid film thickness variation, producing compression and decompression waves, tends to reduce the mean body displacement due to external forces, but it generates both high-frequency fluctuations in body force and in body displacements. For the first time, this novel study provides the near-bottom added mass and justifies the strong body accelerations measured in the laboratory experiments that have not been evidenced in the theoretical studies in the known literature.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference26 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3