Compressible high-pressure lubrication flows in thrust bearings

Author:

Chien S.Y.ORCID,Cramer M.S.ORCID

Abstract

We present a detailed derivation of the Reynolds equation and its corresponding energy equation for three-dimensional, steady, laminar, compressible flows of single-phase Navier–Stokes fluids in thrust bearings. These equations are shown to be valid over most of the dense and supercritical gas regime except for the vicinity of the thermodynamic critical point. It is shown that the primary thermodynamic function governing the lubrication flow of high-pressure gases is the effective bulk modulus defined as the ratio of the bulk modulus to the shear viscosity. Numerical solutions to our Reynolds equation are obtained using a finite difference scheme for both moderate and high-speed flows. Approximate solutions to our Reynolds equation for high-speed flows are also derived through a perturbation analysis. It is found that boundary layers form on three out of four edges of the thrust pad. At the inner and outer radii of the pad, the flow is governed by a nonlinear heat equation. As the main flow leaves the pad, the flow is governed by a nonlinear relaxation equation. These three boundary layer solutions are rendered consistent by the construction of boundary layer solutions in the corner regions. A composite solution is developed which provides a single approximation and has the same accuracy as the individual approximations in their respective regions of validity.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference35 articles.

1. Dousti, S. & Allaire, P. 2016 A compressible hydrodynamic analysis of journal bearings lubricated with supercritical carbon dioxide. In Proceedings of Supercritical CO2 Power Cycle Symposium. San Antonio, TX.

2. Tribological Study of a Slider Bearing in the Supersonic Regime

3. Load and loss for high-speed lubrication flows of pressurized gases between non-concentric cylinders

4. Performance characteristics of an operating supercritical $\mathrm {CO}_2$ Brayton cycle;Conboy;Trans. ASME: J. Engng Gas Turbines Power,2012

5. Design space of foil bearings for closed-loop supercritical CO$_2$ power cycles based on three-dimensional thermohydrodynamic analyses;Kim;Trans. ASME: J. Engng Gas Turbines Power,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3