Tribological Study of a Slider Bearing in the Supersonic Regime

Author:

Dupuy Florence12,Bou-Saïd Benyebka2,Garcia Mathieu3,Grau Grégory3,Rocchi Jérôme3,Crespo Matthieu3,Tichy John4

Affiliation:

1. Liebherr Aerospace Toulouse, 408 Avenue des Etats Unis, Toulouse Cedex 2 31016, France;

2. Université de Lyon, CNRS, INSA Lyon, LaMCoS URM5259, Villeurbanne F-69621, France

3. Liebherr Aerospace Toulouse, 408 avenue des Etats Unis, Toulouse Cedex 2 31016, France

4. Rensselaer Polytechnic Institute, Troy, NY 12180

Abstract

Aerodynamic slider bearings are currently used in various types of turbomachinery. Many such systems perform at increasingly faster speeds and may operate in the supersonic regime. Although there is extensive research on compressible lubrication extrapolated to high-speeds, very little of it addresses the potential supersonic nature of the flow. It is well known in compressible flow that many of the tendencies of subsonic flow actually reverse themselves as the singularity at Mach one is traversed. Thus, examination of this high-speed regime may yield some unanticipated results. The behavior of a thin film of air in the supersonic regime is studied in the two-dimensional flow case with rigid sliding surfaces. The one-dimensional bearing studied has a dual profile consisting of an inlet region converging wedge of constant slope and an exit region of constant gap. Two approaches are compared: the solution of a modified Reynolds equation, and the solution to a version of Navier–Stokes equations adapted to thin films. The results show that the modified Reynolds equation approach, which is useful to describe the behavior of lubricating fluids at high subsonic speeds may be inadequate in the supersonic regime. The present studies show the absence of shock and expansion wave phenomena for cases in which the film thickness ratio does not exceed 0.01.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3