Dielectric anisotropy as indicator of crystal orientation fabric in Dome Fuji ice core: method and initial results

Author:

Saruya TomotakaORCID,Fujita ShujiORCID,Inoue Ryo

Abstract

AbstractPolycrystalline ice is known to exhibit macroscopic anisotropy in relative permittivity (ɛ) depending on the crystal orientation fabric (COF). Using a new system designed to measure the tensorial components of ɛ, we investigated the dielectric anisotropy (Δɛ) of a deep ice core sample obtained from Dome Fuji, East Antarctica. This technique permits the continuous nondestructive assessment of the COF in thick ice sections. Measurements of vertical prism sections along the core showed that the Δɛ values in the vertical direction increased with increasing depth, supporting previous findings of c-axis clustering around the vertical direction. Analyses of horizontal disk sections demonstrated that the magnitude of Δɛ in the horizontal plane was 10–15% of that in the vertical plane. In addition, the directions of the principal axes of tensorial ɛ in the horizontal plane corresponded to the long or short axis of the elliptically elongated single-pole maximum COF. The data confirmed that Δɛ in the vertical and horizontal planes adequately indicated the preferred orientations of the c-axes, and that Δɛ can be considered to represent a direct substitute for the normalized COF eigenvalues. This new method could be extremely useful as a means of investigating continuous and depth-dependent variations in COF.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3