Development of crystal orientation fabric in the Dome Fuji ice core in East Antarctica: implications for the deformation regime in ice sheets

Author:

Saruya TomotakaORCID,Fujita ShujiORCID,Iizuka Yoshinori,Miyamoto Atsushi,Ohno Hiroshi,Hori Akira,Shigeyama Wataru,Hirabayashi Motohiro,Goto-Azuma KumikoORCID

Abstract

Abstract. The crystal orientation fabric (COF) of a polar ice sheet has a significant effect on the rheology of the ice sheet. With the aim of better understanding the deformation regime of ice sheets, the work presented here investigates the COF in the upper 80 % of the Dome Fuji Station ice core in East Antarctica. Dielectric anisotropy (Δε) data were acquired as a novel indicator of the vertical clustering of COF resulting from vertical compressional strain within the dome. The Δε values were found to exhibit a general increase with depth, but with fluctuations over distances in the order of 10–102 m. In addition, significant decreases in Δε were found to be associated with depths corresponding to three major glacial to interglacial transitions. These changes in Δε are ascribed to variations in the deformational history caused by dislocation motion occurring from near-surface depths to deeper layers. Fluctuations in Δε over distances of less than 0.5 m exhibited a strong inverse correlation with Δε at depths greater than approximately 1200 m, indicating that they were enhanced during the glacial-interglacial transitions. The Δε data also exhibited a positive correlation with the concentration of chloride ions and an inverse correlation with the amount of dust particles in the ice core at greater depths corresponding to decreases in the degree of c axis clustering. Finally, we found that fluctuations in Δε persisted to approximately 80 % of the total depth of the ice sheet. These data suggest that the factors determining the deformation of ice include the concentration of chloride ions and the amount of dust particles, and that the layered contrast associated with the COF is preserved all the way from the near-surface to a depth corresponding to approximately 80 % of the thickness of the ice sheet. These findings provide important implications regarding further development of the COF under the various stress-strain configurations that the ice will experience in the deepest region, approximately 20 % of the total depth from the ice/bed interface.

Funder

Japan Society for the Promotion of Science

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3