High-resolution spatial distribution of pCO2 in the coastal Southern Ocean in late spring

Author:

Caetano Ludmila S.,Pollery Ricardo C.G.,Kerr Rodrigo,Magrani Fábio,Ayres Neto Arthur,Vieira Rosemary,Marotta Humberto

Abstract

AbstractWe present a high-resolution spatial study of ocean surface carbon dioxide partial pressure (pCO2), temperature and salinity coupled with a seismic survey performed in subpolar waters with a variable presence of glaciers along the coastal margins of Admiralty Bay and the Bransfield Strait, northern Antarctic Peninsula, during the late spring season. Three zones were identified in this bay. The shallow and relatively fresh SHALLOW GLACIER THAW zone in the inner portion of the bay had high freshwater inputs from active glacial meltwater channels, representing higher pCO2 levels (median ~438 μatm) than the shallow and relatively salty SHALLOW zone without glaciers along the margins and dominated by macroalgae communities at the bottom, which showed relatively low pCO2 levels (median ~371 μatm). The deep and relatively salty CENTRE zone was highly influenced by seawater intrusions from the Bransfield Strait, representing intermediate pCO2 levels (median ~397 μatm). The net sea-air CO2 fluxes in late spring obtained from the high-resolution surface survey in Admiralty Bay indicate a condition of near neutral air-sea CO2 flux, with a median (25–75% interquartile range) value of -0.07 mmol m-2 day-1 (ranging from -12.21 to +4.33 mmol m-2 day-1), contrasting with the slight source to the atmosphere estimated from measurements only in the CENTRE zone. This finding suggests that temperature-sensitive metabolic and physical-chemical processes may cause significant variability in the ocean surface distribution of CO2 over short shoreline distances in the northern Antarctic Peninsula.

Publisher

Cambridge University Press (CUP)

Subject

Geology,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3