Photosynthetic responses of three common mosses from continental Antarctica

Author:

PANNEWITZ STEFAN,GREEN T.G. ALLAN,MAYSEK KADMIEL,SCHLENSOG MARK,SEPPELT ROD,SANCHO LEOPOLDO G.,TÜRK ROMAN,SCHROETER BURKHARD

Abstract

Predicting the effects of climate change on Antarctic terrestrial vegetation requires a better knowledge of the ecophysiology of common moss species. In this paper we provide a comprehensive matrix for photosynthesis and major environmental parameters for three dominant Antarctic moss species (Bryum subrotundifolium, B. pseudotriquetrum and Ceratodon purpureus). Using locations in southern Victoria Land, (Granite Harbour, 77°S) and northern Victoria Land (Cape Hallett, 72°S) we determined the responses of net photosynthesis and dark respiration to thallus water content, thallus temperature, photosynthetic photon flux densities and CO2 concentration over several summer seasons. The studies also included microclimate recordings at all sites where the research was carried out in field laboratories. Plant temperature was influenced predominantly by the water regime at the site with dry mosses being warmer. Optimal temperatures for net photosynthesis were 13.7°C, 12.0°C and 6.6°C for B. subrotundifolium, B. pseudotriquetrum and C. purpureus, respectively and fall within the known range for Antarctic mosses. Maximal net photosynthesis at 10°C ranked as B. subrotundifolium > B. pseudotriquetrum > C. purpureus. Net photosynthesis was strongly depressed at subzero temperatures but was substantial at 0°C. Net photosynthesis of the mosses was not saturated by light at optimal water content and thallus temperature. Response of net photosynthesis to increase in water content was as expected for mosses although B. subrotundifolium showed a large depression (60%) at the highest hydrations. Net photosynthesis of both B. subrotundifolium and B. pseudotriquetrum showed a large response to increase in CO2 concentration and this rose with increase in temperature; saturation was not reached for B. pseudotriquetrum at 20°C. There was a high level of variability for species at the same sites in different years and between different locations. This was substantial enough to make prediction of the effects of climate change very difficult at the moment.

Publisher

Cambridge University Press (CUP)

Subject

Geology,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3