Abstract
As in [4], a specification is a list (r, s, t1 h0, hmc (l), …, c(ho)) such that(i) each of r, s, t1 h0, h∞ is a non-negative integer,(ii) for each i, c(i) is a positive integer,(iii) if h∞ = 0 then ho = ∞,(iv) if h∞ = 1 and t1 + h0 is finite then t1 is even,(v) r + s + t1 + h0 + h∞ = ∞.
Publisher
Cambridge University Press (CUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The classification of finite and locally finite connected-homogeneous digraphs;Combinatorica;2016-06-17
2. Geometry of Neumann subgroups;Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics;1989-12
3. Some uses of coset graphs;Groups — Korea 1983;1984
4. Maximal nonparabolic subgroups of the modular group;Mathematische Annalen;1983-03