Abstract
AbstractLet n be a positive integer. In this paper, we consider the diophantine equation
We prove that this equation has only the positive integer solutions (n, x, y, z) = (1, t, 1, 1), (1, t, 3, 2), (3, 2, 2, 2). Therefore we extend the work done by Leszczyński (Wiadom. Mat., vol. 3, 1959, pp. 37–39) and Makowski (Wiadom. Mat., vol. 9, 1967, pp. 221–224).
Publisher
Cambridge University Press (CUP)
Reference22 articles.
1. On the diophantine equation $x^2 = y^p + 2^k z^p$
2. A note on the Diophantine equation $a^x + b^y = c^z$
3. Some remarks on Pythagorean numbers;Jeśmanowicz;Wiadom. Mat.,1956
4. Existence of primitive divisors of Lucas and Lehmer numbers;Bilu;J. Reine Angew. Math.,2001
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献