The maintained discharge of rat retinal ganglion cells

Author:

FREEMAN DANIEL K.,HEINE WALTER F.,PASSAGLIA CHRISTOPHER L.

Abstract

AbstractAction potentials were recorded from rat retinal ganglion cell fibers in the presence of a uniform field, and the maintained discharge pattern was characterized. Spike trains recorded under ketamine–xylazine anesthesia were generally stationary, while those recorded under urethane anesthesia often showed slow, undriven, quasiperiodic fluctuations in firing rate. In light of these nonstationarities, interspike interval distributions and power spectral densities are reported for data collected primarily under ketamine–xylazine. The majority of cells had multimodal interval distributions, with the first peak in the range of 25.0–38.5 ms and the subsequent peaks occurring at integer multiples of the first peak. Cells with unimodal distributions were fit well by a gamma distribution function. Interval and spike count statistics showed that ON cells tended to fire faster than OFF cells and that cells with higher rates fired in a more regular manner, with the coefficient of variation covering a wide range of values across all cells (0.43–0.97). Both ON and OFF cells show serial correlations between adjacent interspike intervals, while ON cells also showed second-order correlations. Cells with multimodal interval distribution showed a strong peak at high frequencies in the power spectra in the range of 28.9–41.4 Hz. Oscillations were present under both anesthetic conditions and persisted in the dark at a slightly lower frequency, implying that the oscillations are generated independent of any light stimulus but can be modulated by light level. The oscillation frequency varied slightly between cells of the same type and in the same eye, suggesting that multiple oscillatory generating mechanisms exist within the retina. Cells with high-frequency oscillations were described well by an integrate-and-fire model with the input consisting of Gaussian noise plus a sinusoid where the phase was jittered randomly to account for the bandwidth present in the oscillations.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3