A physiological model of binocular rivalry

Author:

Mueller T. J.

Abstract

AbstractThis paper presents a modified reciprocal inhibition model for the temporal dynamics of binocular rivalry. The model is based on neurophysiological mechanisms and is derived from human psychophysical data. A simple reciprocal inhibition oscillator may be described with a set of four coupled differential equations with a neurophysiological interpretation. However, such a circuit does not account for some aspects of the temporal behavior of binocular rivalry, including the effects of contrast change on alternation rate and on the magnitudes of changes in duration of the suppressed and dominant phases. To better account for these phenomena, the equations and their simulation are modified to include three new components: (1) presynaptic inhibition of the reciprocal inhibition by the input, (2) the motor delays that occur when a human observer tracks rivalry and (3) a minimum threshold for each neuron's state variable. The result is a much improved fit to psychophysically-obtained data on the temporal behavior of binocular rivalry. Finally, the model is incorporated into a larger model to suggest how rivalry might occur in a network that usually exhibits binocular fusion.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring Intermittent Dynamics of Neural Activity in a Single-Pair System of Excitatory and Inhibitory Neurons;2023 International Conference on Emerging Techniques in Computational Intelligence (ICETCI);2023-09-21

2. Does V1 response suppression initiate binocular rivalry?;iScience;2023-08

3. Multistability in Perception Dynamics;Encyclopedia of Computational Neuroscience;2022

4. Balanced Colorings and Bifurcations in Rivalry and Opinion Networks;International Journal of Bifurcation and Chaos;2021-06-15

5. Dynamics of a Mutual Inhibition Circuit between Pyramidal Neurons Compared to Human Perceptual Competition;The Journal of Neuroscience;2020-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3