Development of the primate area of high acuity, 3: Temporal relationships between pit formation, retinal elongation and cone packing

Author:

SPRINGER A.D.,HENDRICKSON A.E.

Abstract

By establishing an avascular, highly elastic, region within the fetal area of high acuity (AHA), the developing primate eye has created a unique substrate on which the mechanical forces of intraocular pressure (IOP) and growth-induced retinal stretch (stretch) can act. We proposed (Springer & Hendrickson, 2004b) that these forces generate both the pit and high cone density found in the adult AHA. In this paper, we use quantitative measures to determine the temporal relationships between nasal and temporal retinal elongation, changes in pit depth, cone packing, and cone morphology overM. nemestrinaretinal development. Retinal length increased rapidly to about 105 days postconception (dpc; Phase 1) and then elongation virtually ceased (Phase 2) until just after birth (180 dpc). Retinal elongation due to stretch resumed during Phase 3 until approximately 315 dpc (4–5 months), after which time the retina appeared mature (Phase 4). The pit appeared during the quiescent Phase 2, suggesting that IOP acts, in conjunction with molecular changes in the inner retina, on the highly elastic, avascular, AHA to generate a deep, narrow pit and causes inner retinal cellular displacements. Subsequently (Phase 3), the pit widened, became 50% shallower and central inner retinal lamina thinned slightly due to a small amount of retinal stretch occurring in the AHA. Centripetal movement of cones was minimal until just after birth when the pit reached 88% of its maximal depth. Accelerated cone packing during Phase 3 was temporally correlated with increased stretch. A slight stretching of the central inner retina generates “lift” forces that cause the pit to become shallower and wider. In turn, these “lift” forces draw cones toward the center of the AHA (Springer, 1999). Localized changes in cone morphology associated with packing, included smaller cell body size, a change from a monolayer to a multilayered mound of cell bodies, elongation of inner segments and tilting of the apical portion toward the AHA. These changes began in cones overlying the edges of the pit, not its center. Henle cone axons formed initially in association with centrifugal displacement of the inner retina during pit formation, with an additional subsequent elongation due to cones moving centripetally. An integrated, two-factor model of AHA formation is presented. Initially, during the second half of gestation (Phase 2), IOP acts on the hyperelastic avascular zone of the AHA to generate a deep pit in the inner retina. In the first 4 months after birth (Phase 3), central retinal stretch generates tensile “lift” forces that remodel the pit and pack cones by drawing them toward the AHA center.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3