Dynamic changes in ocular shape during human development and its implications for retina fovea formation

Author:

Rasys Ashley M.1,Wegerski Andrew2,Trainor Paul A.34,Hufnagel Robert B.2,Menke Douglas B.5,Lauderdale James D.16ORCID

Affiliation:

1. Department of Cellular Biology The University of Georgia Athens Georgia USA

2. Ophthalmic Genetics and Visual Function Branch National Eye Institute, National Institutes of Health Bethesda Maryland USA

3. Stowers Institute for Medical Research Kansas City Missouri USA

4. Department of Anatomy & Cell Biology The University of Kansas School of Medicine Kansas City Kansas USA

5. Department of Genetics The University of Georgia Athens Georgia USA

6. Neuroscience Division of the Biomedical and Health Sciences Institute The University of Georgia Athens Georgia USA

Abstract

AbstractThe human fovea is known for its distinctive pit‐like appearance, which results from the displacement of retinal layers superficial to the photoreceptors cells. The photoreceptors are found at high density within the foveal region but not the surrounding retina. Efforts to elucidate the mechanisms responsible for these unique features have ruled out cell death as an explanation for pit formation and changes in cell proliferation as the cause of increased photoreceptor density. These findings have led to speculation that mechanical forces acting within and on the retina during development underly the formation of foveal architecture. Here we review eye morphogenesis and retinal remodeling in human embryonic development. Our meta‐analysis of the literature suggests that fovea formation is a protracted process involving dynamic changes in ocular shape that start early and continue throughout most of human embryonic development. From these observations, we propose a new model for fovea development.

Funder

National Eye Institute

National Science Foundation

Achievement Rewards for College Scientists Foundation

Stowers Institute for Medical Research

National Institutes of Health

Publisher

Wiley

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In Vivo Assessment of Retinal Phenotypes in Axenfeld–Rieger Syndrome;Investigative Opthalmology & Visual Science;2024-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3