Two signals in the human rod visual system: A model based on electrophysiological data

Author:

Stockman Andrew,Sharpe Lindsay T.,Rüther Klaus,Nordby Knut

Abstract

AbstractIn the human rod visual system, self-cancellation of flicker signals is observed at high rod intensity levels near 15 Hz, both perceptually and in the electroretinogram (ERG). This and other evidence suggests that two rod signals are transmitted through the human retina with different speeds of transmission. Here we report a series of flicker ERG recordings from a normal observer and an observer who lacks cone vision. From these results, we propose a quantitative model of the two rod signals, which assumes (1) that the amplitude of the slow signal grows linearly with log intensity but then saturates at ~1 scot, td; (2) that the amplitude of the fast signal grows linearly with intensity; (3) that there is a difference in time delay of ~33 ms between two rod signals of the same polarity (or of ~67 ms if the signals are of inverted polarity); and (4) that the time delay of both signals declines linearly with log intensity (by ~10 ms per log scot. td). These simple assumptions provide a remarkably good account of the experimental data. Our results and model are relevant to current anatomical theories of the mammalian rod visual system. We speculate that the slower signal in the human ERG may reflect the transmission of the rod response via the rod bipolars and the An amacrine cells, while the faster signal may reflect its transmission via the rod-cone gap junctions and the cone bipolars. There are, however, several objections to this simple correspondence.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3