Scotopic threshold response of proximal retina in cat

Author:

Sieving P. A.,Frishman L. J.,Steinberg R. H.

Abstract

We describe a new response in proximal retina of cat that is present under scotopic conditions, clearly differs from PII (b-wave and DC component) and contributes a negative potential at threshold to the diffuse electroretinogram (ERG). We have termed this response the scotopic threshold response (STR). Extracellular potentials evoked in response to circular spots of light at dark-adapted threshold, and with dim backgrounds, were recorded with microelectrodes placed intraretinally at different depths. The dark-adapted response of proximal retina (STR) consisted of a graded negative potential to the onset of illumination that maintained amplitude during illumination and decayed back toward the base line at stimulus offset without evidence of a negative-going off response. It thereby differed in form from the photopic M-wave response of proximal retina, which has a negative-going off response. It also did not exhibit spatial tuning, simply increasing in size with stimulus area. In addition, the STR appears to be a rod-driven response whose threshold approximates that of the most sensitive ganglion cells in cat, whereas the M-wave is a much higher threshold cone-driven response. The STR could be clearly distinguished from PII on the basis of its form, depth-distribution, and dynamic range. For example, the STR had its maximum amplitude in the proximal retina at 17% retinal depth, whereas scotopic PII had its maximum in the distal retina at 48% retinal depth. Also, the STR had a lower threshold than PII intraretinally and saturated well below the level of saturation of scotopic PII (rod saturation). By analogy to the PNR and M-wave, the STR is hypothesized to represent either an extracellular voltage arising from proximal retinal neurons or Muller cell responses to K+ released by these neurons. Recording in the vitreous, near the retinal surface, showed that the STR always had a negative polarity. The polarity reversal of the STR at 50-60% retinal depth (from negative, proximal to positive, distal) suggested the presence of a sink proximal to the reversal point and a source distal to it. We also recorded the vitreal ERG in response to diffuse illumination of the dark-adapted retina. The STR could be clearly identified in the scotopic ERG as a threshold negative potential that had been observed previously in the mammalian ERG. The STR differs, therefore, from PII (b-wave and DC component) that is a higher threshold positive component in the diffuse ERG.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3