Abstract
AbstractMuch of what is currently known about the visual response of retinal bipolar cells is based on studies of rod-dominant responses to flashes in the dark in the isolated retina. This minireview summarizes quantitative findings on contrast processing in the intact light-adapted retina based on intracellular recording from more than 400 cone-driven bipolar cells in the tiger salamander: 1) In the main, the contrast responses of ON and OFF cells are surprisingly similar, suggesting a need to refine the view that ON and OFF cells provide the selective substrates for processing of positive and negative contrasts, respectively. 2) Overall, the response is quite nonlinear, showing very high gain for small contrasts, some 10–15 times greater than that of cones, but then quickly approaches saturation for higher contrasts. 3) Under optimal conditions of light adaptation, both classes of bipolar cells show evidence for efficient coding with respect to the contrasts in natural images. 4) There is a marked diversity within both the ON and OFF bipolar cell populations and an absence of discrete subtypes. The dynamic ranges bracket the range of contrasts in nature. 5) For both ON and OFF cells, the receptive field organization shows a striking symmetry between center and surround for responses of the same polarity and thus opposite contrast polarities. 6) The latency difference between ON and OFF cells is about 30 ms, which seems qualitatively consistent with a delay due to the G-protein cascade in ON bipolar cells. 7) In sum, we report quantitative evidence for at least 11 transformations in signal processing that occur between the voltage response of cones and the voltage response of bipolar cells.
Publisher
Cambridge University Press (CUP)
Subject
Sensory Systems,Physiology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献