REFLECTION RANKS AND ORDINAL ANALYSIS

Author:

PAKHOMOV FEDOR,WALSH JAMES

Abstract

AbstractIt is well-known that natural axiomatic theories are well-ordered by consistency strength. However, it is possible to construct descending chains of artificial theories with respect to consistency strength. We provide an explanation of this well-orderedness phenomenon by studying a coarsening of the consistency strength order, namely, the $\Pi ^1_1$ reflection strength order. We prove that there are no descending sequences of $\Pi ^1_1$ sound extensions of $\mathsf {ACA}_0$ in this ordering. Accordingly, we can attach a rank in this order, which we call reflection rank, to any $\Pi ^1_1$ sound extension of $\mathsf {ACA}_0$ . We prove that for any $\Pi ^1_1$ sound theory T extending $\mathsf {ACA}_0^+$ , the reflection rank of T equals the $\Pi ^1_1$ proof-theoretic ordinal of T. We also prove that the $\Pi ^1_1$ proof-theoretic ordinal of $\alpha $ iterated $\Pi ^1_1$ reflection is $\varepsilon _\alpha $ . Finally, we use our results to provide straightforward well-foundedness proofs of ordinal notation systems based on reflection principles.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference27 articles.

1. Reflection calculus and conservativity spectra

2. Reflection Principles and their Use for Establishing the Complexity of Axiomatic Systems

3. [9] Beklemishev, L. and Pakhomov, F. , Reflection algebras and conservation results for theories of iterated truth, 2019. arXiv:1908.10302.

4. Calibrating provability logic: From modal logic to reflection calculus;Beklemishev;Advances in Modal Logic,2012

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterizations of ordinal analysis;Annals of Pure and Applied Logic;2023-04

2. AXIOMATIZATIONS OF PEANO ARITHMETIC: A TRUTH-THEORETIC VIEW;The Journal of Symbolic Logic;2022-12-12

3. AN INCOMPLETENESS THEOREM VIA ORDINAL ANALYSIS;The Journal of Symbolic Logic;2022-09-12

4. A NOTE ON FRAGMENTS OF UNIFORM REFLECTION IN SECOND ORDER ARITHMETIC;The Bulletin of Symbolic Logic;2022-06-09

5. BSL volume 28 issue 2 Cover and Back matter;The Bulletin of Symbolic Logic;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3