Abstract
AbstractWe consider fragments of uniform reflection for formulas in the analytic hierarchy over theories of second order arithmetic. The main result is that for any second order arithmetic theory
$T_0$
extending
$\mathsf {RCA}_0$
and axiomatizable by a
$\Pi ^1_{k+2}$
sentence, and for any
$n\geq k+1$
,
$$\begin{align*}T_0+ \mathrm{RFN}_{\varPi^1_{n+2}}(T) \ = \ T_0 + \mathrm{TI}_{\varPi^1_n}(\varepsilon_0), \end{align*}$$
$$\begin{align*}T_0+ \mathrm{RFN}_{\varSigma^1_{n+1}}(T) \ = \ T_0+ \mathrm{TI}_{\varPi^1_n}(\varepsilon_0)^{-}, \end{align*}$$
where T is
$T_0$
augmented with full induction, and
$\mathrm {TI}_{\varPi ^1_n}(\varepsilon _0)^{-}$
denotes the schema of transfinite induction up to
$\varepsilon _0$
for
$\varPi ^1_n$
formulas without set parameters.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献