Predicting Partisan Responsiveness: A Probabilistic Text Mining Time-Series Approach

Author:

Bustikova LenkaORCID,Siroky David S.ORCID,Alashri SaudORCID,Alzahrani SultanORCID

Abstract

When do parties respond to their political rivals and when do they ignore them? This article presents a new computational framework to detect, analyze and predict partisan responsiveness by showing when parties on opposite poles of the political spectrum react to each other’s agendas and thereby contribute to polarization. Once spikes in responsiveness are detected and categorized using latent Dirichlet allocation, we utilize the terms that comprise the topics, together with a gradient descent solver, to assess the classifier’s predictive accuracy. Using 10,597 documents from the official websites of radical right and ethnic political parties in Slovakia (2004–2014), the analysis predicts which political issues will elicit partisan reactions, and which will be ignored, with an accuracy of 83% (F-measure) and outperforms both Random Forest and Naive Bayes classifiers. Subject matter experts validate the approach and interpret the results.

Publisher

Cambridge University Press (CUP)

Subject

Political Science and International Relations,Sociology and Political Science

Reference62 articles.

1. Latent Dirichlet Allocation;Blei;Advances in Neural Information Processing Systems (NIPS) 14,2002

2. Policy Adjustment by Parties in Response to Rival Parties’ Policy Shifts: Spatial Theory and the Dynamics of Party Competition in Twenty-Five Post-War Democracies

3. To Sladké Slovo Demokracia…. Spokojnost’ s Demokraciou a Politické Odcudzenie na Slovensku;Gyárfášová;Sociológia–Slovak Sociological Review,2015

4. The Shadow Cabinet in Westminster Systems: Modeling Opposition Agenda Setting in the House of Commons, 1832–1915

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3