Predicting Marathi News Class Using Semantic Entity-Driven Clustering Approach

Author:

Saini Jatinderkumar R.1ORCID,Bafna Prafulla Bharat2

Affiliation:

1. Symbiosis Institute of Computer Studies and Research, Symbiosis International University (Deemed), India

2. Symbiosis International University (Deemed), India

Abstract

Document management is a need for an era and managing documents in the regional languages is a significant and untouched area. Marathi corpus consisting of news is processed to form Group Entity document matrix Marathi (GEDMM), Vector space model for Marathi (VSMM) and Hysynset Vector space model for Marathi (HSVSMM). GEDMM uses entity group extracted using Condition random field (CRF). The frequent terms are used to construct VSMM using TF-IDF. HSVSMM uses synsets using hypernyms-hyponyms and synonyms. GEDMM and HSVSMM use dimension reduction by selecting significant feature groups. Hierarchical agglomerative clustering (HAC) is used and a dendrogram is produced to visualize the clusters. The performance analysis is carried out using several parameters like entropy, purity, misclassification error and accuracy. The clusters produced using GEDMM shows the minimum entropy and the highest purity. A random forest classifier is applied and the results are evaluated using misclassification error and accuracy.

Publisher

IGI Global

Subject

Information Systems and Management,Strategy and Management,Computer Science Applications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Soft Voting Based Hybrid Approach to Detect Fake News in Hindi;2022 International Conference on Futuristic Technologies (INCOFT);2022-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3