Non-semi-bounded closed symmetric forms associated with a generalized Friedrichs extension

Author:

de Snoo Henk,Fleige Andreas,Hassi Seppo,Winkler Henrik

Abstract

The theory of closed sesquilinear forms in the non-semi-bounded situation exhibits some new features, as opposed to the semi-bounded situation. In particular, there can be more than one closed form associated with the generalized Friedrichs extension SF of a non-semi-bounded symmetric operator S (if SF exists). However, there is one unique form [·, ·] satisfying Kato's second representation theorem and, in particular, dom = dom ∣SF1/2. In the present paper, another closed form [·, ·], also uniquely associated with SF, is constructed. The relation between these two forms is analysed and it is shown that these two non-semi-bounded forms can indeed differ from each other. Some general criteria for their equality are established. The results induce solutions to some open problems concerning generalized Friedrichs extensions and complete some earlier results about them in the literature. The study is connected to the spectral functions of definitizable operators in Kreĭn spaces.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Positive and Negative Eigenfunction Expansion Results for Indefinite Sturm–Liouville Problems;Integral Equations and Operator Theory;2023-01-06

2. Representation of non-semibounded quadratic forms and orthogonal additivity;Journal of Mathematical Analysis and Applications;2021-03

3. Plummeting and blinking eigenvalues of the Robin Laplacian in a cuspidal domain;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2019-08-14

4. A Kato's second type representation theorem for solvable sesquilinear forms;J MATH ANAL APPL;2018

5. A Kato's second type representation theorem for solvable sesquilinear forms;Journal of Mathematical Analysis and Applications;2018-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3