Plummeting and blinking eigenvalues of the Robin Laplacian in a cuspidal domain

Author:

Nazarov Sergei A.,Popoff Nicolas,Taskinen Jari

Abstract

We consider the Robin Laplacian in the domains Ω and Ωε, ε > 0, with sharp and blunted cusps, respectively. Assuming that the Robin coefficient a is large enough, the spectrum of the problem in Ω is known to be residual and to cover the whole complex plane, but on the contrary, the spectrum in the Lipschitz domain Ωε is discrete. However, our results reveal the strange behaviour of the discrete spectrum as the blunting parameter ε tends to 0: we construct asymptotic forms of the eigenvalues and detect families of ‘hardly movable’ and ‘plummeting’ ones. The first type of the eigenvalues do not leave a small neighbourhood of a point for any small ε > 0 while the second ones move at a high rate O(| ln ε|) downwards along the real axis ℝ to −∞. At the same time, any point λ ∈ ℝ is a ‘blinking eigenvalue’, i.e., it belongs to the spectrum of the problem in Ωε almost periodically in the | ln ε|-scale. Besides standard spectral theory, we use the techniques of dimension reduction and self-adjoint extensions to obtain these results.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference27 articles.

1. Boundary value problems for elliptic problems in domains with conical or corner points;Kondratiev;Trudy Moskov. Matem. Obshch.,1967

2. Differentiable Functions on Bad Domains

3. Hermitian bilinear forms which are not semibounded

4. Nazarov, S. A. and Taskinen, J. . ‘Blinking’ eigenvalues of the Steklov problem generate the continuous spectrum in a cuspidal domain. Submitted.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generalized Impedance Boundary Conditions with Vanishing or Sign-Changing Impedance;SIAM Journal on Mathematical Analysis;2024-06-10

2. Parasitic Eigenvalues of Spectral Problems for the Laplacian with Third-Type Boundary Conditions;Computational Mathematics and Mathematical Physics;2023-07

3. Parasitic Eigenvalues of Spectral Problems for the Laplacian with Third-Type Boundary Conditions;Журнал вычислительной математики и математической физики;2023-07-01

4. “Blinking eigenvalues” of the Steklov problem generate the continuous spectrum in a cuspidal domain;Journal of Differential Equations;2020-08

5. On quasi-reversibility solutions to the Cauchy problem for the Laplace equation: regularity and error estimates;ESAIM: Mathematical Modelling and Numerical Analysis;2020-02-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3