Dynamic Analysis and Reliability Evaluation for an Eccentric Speed Reducer Based on Fem

Author:

Tsai Y. T.ORCID,Lin K. H.

Abstract

ABSTRACTThis paper reported the designed approaches of cycloidal mechanisms, studied its dynamic forces and failure characteristics using finite element methods (FEM). A simplified cycloidal mechanism (CM) is constructed to fulfill dynamic analysis and reliability evaluation. The studied results show that the loads of the mechanism are shared mainly by a half of the outer rollers and the inner pins. The possible failures of the mechanism will occur at the inner pins caused by the bending stress, and at the cycloid disc induced by the contacting stress. The failure of the inner pins will dominate the damage of the mechanism. A method of evaluating stress variation is proposed for fulfilling reliability design. The stress variations are derived according to the data in dynamic analysis by regression analysis. The methods of design modification are reported for improve the reliabilities. The allowable loads of the CM can be decided accordingly based on the analyzed information.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3