Analytical Prediction of Stability Lobes for Passively Damped Boring Bars

Author:

Fallah M.,Moetakef-Imani B.

Abstract

AbstractThe present article proposes the closed-form solution for analytical prediction of stability lobes in internal turning process. The passively damped boring bar is modeled as a cantilevered Euler-Bernoulli beam with constant cross sectional properties in which a Tuned Mass Damper (TMD) is embedded for the purpose of chatter suppression. The non-dimensional equations of motion are derived, assuming that the boring bar dynamics is well-represented by the fundamental mode of vibration. The stability of equivalent two-DOF dynamic model, i.e. boring bar with TMD, is analyzed in frequency domain. The closed- form expressions for critical depth of cut and spindle speed are presented in terms of boring bar and TMD characteristics. The proposed solution considers the effects of boring bar's structural damping and cutting geometry of insert on the stability behavior of passively damped cutting tool. An unconstrained optimization method is utilized to compute the most optimal set of tuning parameters for anti-chatter TMD. In order to improve the boundary of stability in a global sense, maximization of minimum critical depth of cut is selected as the objective of optimization. The superior performance of anti-chatter TMD is compared to Hand H2TMDs for a wide range of applications. Moreover, the achieved results show a remarkable improvement of stability boundary compared to recent research works.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neuartiger Schwingungstilger;Zeitschrift für wirtschaftlichen Fabrikbetrieb;2023-08-01

2. Experimental Research on the Dynamic Stability of Internal Turning Tools for Long Overhangs;Journal of Manufacturing and Materials Processing;2023-03-09

3. Model based design of tuned mass dampers for boring bars of small diameter;Procedia CIRP;2023

4. Investigation on nonlinear dynamics and active control of boring bar chatter;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2021-02-05

5. Investigation of stability in internal turning using a boring bar with a passive constrained layer damping;FME Transactions;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3