Vibration Calculation of Spatial Multibody Systems Based on Constraint-Topology Transformation

Author:

Jiang W.,Chen X. D.,Luo X.,Hu Y. T.,Hu H. P.

Abstract

ABSTRACTMany kinds of mechanical systems can be modeled as spatial rigid multibody systems (SR-MBS), which consist of a set of rigid bodies interconnected by joints, springs and dampers. Vibration calculation of SR-MBS is conventionally conducted by approximately linearizing the nonlinear equations of motion and constraint, which is very complicated and inconvenient for sensitivity analysis. A new algorithm based on constraint-topology transformation is presented to derive the oscillatory differential equations in three steps, that is, vibration equations for free SR-MBS are derived using Lagrangian method at first; then, an open-loop constraint matrix is derived to obtain the vibration equations for open-loop SR-MBS via quadric transformation; finally, a cut-joint constraint matrix is derived to obtain the vibration equations for closed-loop SR-MBS via quadric transformation. Through mentioned above, the vibration calculation can be significantly simplified and the sensitivity analysis can be conducted conveniently. The correctness of the proposed method has been verified by numerical experiments in comparison with the traditional approaches.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Reference30 articles.

1. Multibody formalism for real-time application using natural coordinates and modified state space

2. A Practical Approach for the Linearization of the Constrained Multibody Dynamics Equations

3. 1. Flores P. , Ambrósio J. , Claro P. and Lankarani H. M. , “Kinematics and Dynamics of Multibody Systems with Imperfect Joints: Models and Case Studies, Springer-Verlag,” Berlin, Germany, pp. 24–25 (2008).

4. Linearizing the Equations of Motion for Multibody Systems Using an Orthogonal Complement Method

5. Modelling multibody systems with indirect coordinates

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3